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Abstract
With the aim of detecting AI-generated images and identifying the specific models responsible for their gen-
eration, we propose a multi-modal multi-task model. The model leverages pre-trained BERT and CLIP Vision
encoders for text and image feature extraction, respectively, and employs cross-modal feature fusion with a
tailored multi-task loss function. Additionally, a pseudo-labeling-based data augmentation strategy was uti-
lized to expand the training dataset with high-confidence samples. The model achieved fifth place in both
Tasks A and B of the ‘CT2: AI-Generated Image Detection’ competition, with F1 scores of 83.16% and 48.88%,
respectively. These findings highlight the effectiveness of the proposed architecture and its potential for advanc-
ing AI-generated content detection in real-world scenarios. The source code for our method is published on
https://github.com/xxxxxxxxy/AIGeneratedImageDetection.

Keywords
Multi-modal, AI-generated content detection, Multi-task, Pseudo-labeling

1. Introduction

The rapid evolution of text-to-image generation systems has significantly transformed creative and
practical domains, enabling the seamless generation of high-quality images from textual descriptions.
Models such as Stable Diffusion [1], DALL-E [2], and MidJourney1 represent state-of-the-art techniques
in this field, capable of producing high-quality images with high levels of detail and realism. However,
this technological leap has introduced critical challenges in distinguishing AI-generated images from
those created by humans, which is paramount to ensure the authenticity of media, to protect intellectual
property, and to combat misinformation [3].

To address these challenges, we set out to use multi-modal deep learning models to extract and learn
the unique features of various image generation systems, enabling robust classification of generated
images. By integrating the strengths of models such as BERT [4] for textual analysis and CLIP [5]
for image representation, our approach integrates cross-modal information to identify distinctive
characteristics of each generation model. This methodology enabled our approach to secure the fifth
place in both Tasks A and B of the CT2: AI-Generated Image Detection competition, achieving an F1
score of 83.16% and 48.88%, respectively. These results highlight the robustness of our approach across
different tasks.

2. Background

2.1. CT2: AI-Generated Image Detection

The CT2: AI-Generated Image Detection competition [6] aims to determine which types of model-
generated images are easier or harder to detect, addressing the challenges of distinguishing AI-generated
images from those created by humans. It is divided into two tasks. Task A is a binary classification
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task, in which participants aim to determine whether a given image was generated by AI or created
by a human. Task B builds upon Task A and requires participants to identify the specific AI model
responsible for generating each image. This includes distinguishing between models such as Stable
Diffusion 3 (SD 3), Stable Diffusion XL (SDXL), Stable Diffusion 2.1 (SD 2.1), DALL-E 3, and Midjourney
6.

2.2. Related Work on Multi-modal AI-Generated Image Detection

The rapid advancement of large language models has inspired efforts in the vision community to
harness large-scale models trained on both images and text [7, 8]. While multi-modal approaches
have demonstrated significant success in various applications, their utilization in AI-generated image
detection remains relatively underexplored.

Recent studies have begun to investigate the use of pre-trained multi-modal models, primarily variants
of CLIP, for detecting AI-generated images. Ojha et al. [9] employed nearest neighbor search and
linear probing within the CLIP feature space to generalize detection performance to out-of-distribution
(OOD) data. However, this approach required a large dataset of fake and real images for classifier
training, which can be resource-intensive and limit scalability. Building on these efforts, Cozzolino
et al. [10] introduced a lightweight CLIP-based detector but demonstrated that superior performance
can be achieved using significantly less data. These studies highlight the remarkable flexibility and
effectiveness of CLIP as a foundation model for universal AI-generated image detection, showcasing its
potential to handle diverse and challenging scenarios with minimal training data.
Despite advancements, the lack of aligned multi-modal datasets remains a key challenge for robust

detection methods, especially in triple-modality settings (text, image, and voice). Huangshan et al.
[11] address this with a large-scale dataset RU-AI, constructed from Flickr8K, COCO, and Places205,
containing 1,475,370 instances with AI-generated duplicates and noise variants for robustness analysis.
Experiments show that state-of-the-art models still struggle with accurate and robust classification,
highlighting the challenges in multi-modal detection.

3. System Overview

Figure 1 illustrates the architecture of our Multi-modal Multi-task Model, designed to classify and
analyze AI-generated images. The model combines text and image inputs through multi-modal feature
extraction and fusion, enabling robust predictions for two tasks: detecting whether an image is AI-
generated (Task A) and identifying the specific AI model responsible for generating the image (Task
B).

3.1. Feature Extraction and Classification

The model begins with two input streams: text input and image input. For text input, a tokenizer
preprocesses the raw text, converting it into tokenized sequences that are subsequently fed into a
pre-trained BERT model to extract contextualized text features. In parallel, the image input is processed
into pixel values, which serve as numerical representations of the image, suitable for the model. These
pixel values are obtained using a pre-trained AutoFeatureExtractor from the CLIP model. The feature
extractor performs standard preprocessing steps, such as resizing the image to a fixed dimension,
converting it to a tensor, and normalizing pixel intensity values to align with the requirements of the
CLIP vision encoder. This ensures consistency and compatibility across all input images, enabling the
vision encoder to extract high-level visual features effectively.

Once the textual and visual features are extracted, they are concatenated and projected into a shared
feature space through a fully connected layer, enabling effective multi-modal feature fusion. This shared
representation is subsequently passed to two distinct classification heads. The first is the Label_A
Classifier, designed for binary classification to determine whether an image is AI-generated. The second
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Figure 1: Overall Framework.

is the Label_B Classifier, responsible for multi-class classification to identify the specific AI model, such
as SD 3, SDXL, DALL-E 3, or MidJourney 6, that generated the image.

3.2. Multi-task Loss Optimization

The optimization of this model relies on a multi-task loss function designed for two objectives. For
Task A, a Binary Cross-Entropy Loss is applied to classify images as either real or AI-generated. For
Task B, a Conditional Cross-Entropy Loss is computed only for samples that Task A has classified
as AI-generated (i.e., LABEL_A == 1). Since LABEL_B is only meaningful when LABEL_A predicts
an AI-generated image, this conditional design prevents unnecessary computations for real images
(LABEL_A == 0), reducing noise and improving classification efficiency. The total loss is the sum of
these two components, ensuring the model effectively balances both tasks.

4. Experimental Setup

4.1. Dataset

The dataset used for our experiments was released by the organizers of the CT2: AI-Generated Image
Detection [12]. The dataset comprises 53,353 samples derived from the original MS COCO dataset,
where captions and images were processed using various text-to-image generation models, including
SD 3, SDXL, SD 2.1, DALL-E 3, and Midjourney 6. Captions from MS COCO were fed into these models
to generate the corresponding images, creating a diverse and comprehensive dataset.



4.2. Parameter Setting

The model integrates a text encoder initialized with the pre-trained BERTmodel (bert-base-uncased) and
an image encoder using the vision module of the CLIP model (openai/clip-vit-base-patch32). The output
heads were configured for binary classification (LABEL_A) and multi-class classification (LABEL_B)
with six categories, including five AI types and one for real images.

The training process was conducted with the following parameters: a learning rate of 2×10−5, weight
decay set to 0.01, a batch size of 256 for both training and evaluation, and a total of 8 epochs.
The evaluation was performed at the end of each epoch, and the Weighted-F1 score on Task A was

selected as the metric to determine the best model. The training process was configured to load the
best-performing model at the conclusion of training. Model checkpoints were saved at the end of each
epoch, preserving only the most recent checkpoint to reduce storage space.

4.3. Data Augmentation

To enhance the generalization ability of the model and improve its performance on AI-generated image
detection tasks, we employed a pseudo-label-based data augmentation strategy. This approach leverages
high-confidence predictions from the model on unlabeled test data to expand the training dataset with
pseudo-labeled samples.

The process begins by using the trained model to predict labels for the test dataset, which consists of
captions and their corresponding images. Captions are tokenized using the pre-trained BERT tokenizer,
and images are preprocessed into pixel values using the CLIP feature extractor. The model predicts two
outputs: Label_A, indicating whether an image is AI-generated, and Label_B, specifying the AI model
responsible for generating the image. Alongside these predictions, confidence scores are computed for
both labels. We set a confidence threshold of 0.8, and only samples where both predictions exceed this
threshold are considered for augmentation.

For the selected high-confidence samples, pseudo-labels are generated and stored, including the text
captions, image paths, and the predicted labels for Label_A and Label_B. These samples are preprocessed
and split into training and validation subsets using an 8:2 ratio. The resulting pseudo-labeled datasets
are then concatenated with the original training and validation datasets to form the extended training
and validation datasets.

4.4. Implementation

The execution of our model was carried out on a high-performance computing server equipped with a
20-core CPU, 80 GB NVIDIA A100 GPU, 120 GB RAM, and 400 GB of available workspace2.
The software environment was built using PyTorch 2.4, along with Hugging Face’s Transformers

library, which facilitated the use of pre-trained models for both text and image encoders. The training
and evaluation processes were managed using the Hugging Face Trainer API, which streamlined
optimization, evaluation, and checkpoint management.

5. Results

During the training phase, the model achieved robust results on the validation set, with an F1 score of
99.58% for Task A and an Weighted-F1 score of 85.95% for Task B (multi-class classification). For Task
A, the model achieved an accuracy of 99.24%, with precision and recall scores of 99.44% and 99.72%,
respectively, reflecting its ability to reliably distinguish between real and AI-generated images. For
Task B, the model achieved an accuracy of 90.04%, with a precision of 82.56% and a recall of 90.04%,
demonstrating its ability to identify the specific AI models that generated the content.
On the official test set, evaluated by the competition organizers, the model secured the 5th place in

both Tasks A and B. For Task A, the model achieved an F1 score of 83.16%, consistent with its binary

2https://openbayes.com/



classification capability. For Task B, the model achieved an F1 score of 48.88%, as reported by the
organizers.

6. Conclusion

This paper presents a multi-modal multi-task model for detecting and analyzing AI-generated images,
addressing the challenges of distinguishing AI-generated content and identifying the specific models
responsible for generating it. The proposed architecture effectively integrates pre-trained text and
image encoders, employs cross-modal feature fusion, and utilizes a tailored multi-task loss function to
handle binary and multi-class classification tasks. The competitive performance on the official test set
further validated the model’s strength, achieving 5th place in both Task A and Task B, with F1 scores of
83.16% and 48.88%, respectively.

However, our pseudo-label-based data augmentation strategy introduces potential biases. A key con-
cern is error propagation, where incorrect pseudo-labels reinforce existing model errors. Additionally,
selection bias may arise from high-confidence filtering, as our 0.8 threshold favors easier-to-classify sam-
ples, underrepresenting ambiguous cases. Data distribution shift is another challenge, as pseudo-labeled
samples from the test set may not align with the original training data, affecting generalization. More-
over, class imbalance can occur if certain AI-generated image styles or models receive high-confidence
pseudo-labels more frequently, leading to overrepresentation. Finally, train-test contamination poses a
risk, as pseudo-labeling test data may introduce overlap between training and evaluation sets, inflating
performance estimates.
Future research will focus on exploring more advanced and effective multi-modal feature fusion

strategies, moving beyond the simple concatenation approach used in this study. Techniques such
as attention mechanisms, cross-modal transformers, or graph-based methods will be investigated to
better capture interactions between textual and visual modalities. Additionally, future work will aim
to model the relationships between images associated with the same caption, rather than treating
them as independent samples. Furthermore, to mitigate the potential biases introduced by our data
augmentation strategy, future studies will incorporate uncertainty-aware training, employ diverse
augmentation techniques, and implement strategies to address class imbalance, ensuring a more robust
and fair model.
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