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Abstract—Understanding human interactions and social struc-
tures is an incredibly important task, especially in such an
interconnected world. One task that facilitates this is Stance
Detection, which predicts the opinion or attitude of a text towards
a target entity. Traditionally, this has often been done mainly
via the use of text-based approaches, however, recent work has
produced a model (CT-TN) that leverages information about a
user’s social network to help predict their stance, outperforming
certain cross-target text-based approaches. Unfortunately, the
data required for such graph-based approaches is not always
available. This paper proposes two novel tools for Stance Detec-
tion: the Ego Network Model (ENM) and the Signed Ego Network
Model (SENM). These models are founded in anthropological and
psychological studies and have been used within the context of
social network analysis and related tasks (e.g., link prediction).
Stance Detection predictions obtained using these features achieve
a level of accuracy similar to the graph-based features used by
CT-TN while requiring less and more easily obtainable data.
In addition to this, the performances of the inner and outer
circles of the ENM, representing stronger and weaker social ties,
respectively are compared. Surprisingly, the outer circles, which
contain more numerous but less intimate connections, are more
useful for predicting stance.

Index Terms—stance detection, cross-target, ct-tn, ego network,
signed relationships, social media

I. INTRODUCTION

Humans have always been social animals. Everyday we
interact countless times with one another and these interactions
form the basis of our modern societies. It has even been
argued that our ability to maintain larger social groups was
the primary reason that the volume of our brains increased
significantly in size [1]. What’s more, since the advent of the
internet, humans have also been able to interact with each
other regardless of geographical location. Because humans
are now more interconnected than ever, understanding social
connections and how they contribute to the spreading of ideas
and opinions has never been more important.

The exponential expansion of social networks has intro-
duced fresh obstacles in the realm of information retrieval [2].
One research task that deals directly with opinions on social
networks is Stance Detection (SD), which aims to predict
the stance of a given text towards a target entity [3]. Of
course, being able to monitor the opinions of individuals or
even overall trends in larger communities and populations can
be extremely impactful. Especially, given its application to
politics, where it can be used to quickly understand how people
feel towards a given topic or to predict how they will vote.

§Co-first authors with equal contribution and importance.

SD has often viewed interactions in isolation, predicting
a user’s opinion towards a given entity purely based on
what they have written (e.g. [4]). However, recent research
has shown that considering an individual’s surrounding so-
cial network can greatly improve the accuracy of SD [5],
highlighting the influence of social connections on opinions.
Specifically, a model called CT-TN (Cross-Target Text-Net),
which uses predictions from a more traditional text-based
model, RoBERTa [6], together with multiple network features
from the X (formerly Twitter) social media platform: likes (a
list of users whose posts have been liked by the target user),
followers (the users who follow the target user) and friends
(the users who are followed by the target user). This was
done by creating an embedding for each feature and passing
it through a classification model to obtain a prediction for
each feature. The final prediction was then generated based
on a majority vote of all the features (see Figure 1). The CT-
TN model outperformed other competitive models, such as
CrossNET [7] and TGA-Net [8] in six different experimental
conditions.

Fig. 1. Architecture of the CT-TN model.

However, the different network features that CT-TN requires
are not always available. Indeed, the multiple different data
sources required for CT-TN may be impossible or extremely
costly to obtain in many situations. Therefore, it would be
pertinent to investigate alternative approaches or features that
are more parsimonious.

To this effect, in this work, we exploit models of users’ per-
sonal networks, grounded on well-established findings in an-
thropology. In addition to providing solid quantitative models
of the structure of users’ social relationships, which can be ob-
tained whenever users communicate publicly, thus minimising



restrictions from the aforementioned shortcomings as much
as possible. Indeed, given the aforementioned importance of
understanding how humans communicate, it is unsurprising
that this topic had been researched long before the internet.
For instance, anthropological and psychological studies have
found that the number of relationships that an individual is
able to maintain is remarkably consistent across members
of the same species [9]. The maximum maintainable group
size is correlated with the proportional size of the neocortex
part of said species’ brain; strongly suggesting that a group’s
size is innately limited by the cognitive ability of the species
within it [1]. What’s more, these connections can be sorted by
contact frequency into a series of concentric groups [10], with
a smaller number of high-frequency connections at the centre
and larger numbers of less-frequent connections towards the
edges.

A representation of this structure, known as the Ego Net-
work Model (ENM), places a target individual (the Ego, from
which the model takes its name) at the centre and surrounds
them by all of their connections (Alters) (see Figure 2). For
humans, the expected sizes of the concentric groups range
from 5 (support clique), to 15 (sympathy group), then around
45-50 (affinity group) and finally 150 (active network) [10].
An additional inner circle of 1-2 connections has also been
found in many online contexts [11]. Interestingly, these groups
increase in size by a factor of around 3 each time, and this
scaling factor has also been found for certain non-human
animals, such as other primates and even birds [12].

The ENM has been studied not only offline but has also been
used to reveal many novel insights about communications in
online contexts [13]. For instance, the ENM has been used
to discover differences between the behaviours of various
types of users, including journalists [14] and members of
different online communities [15]. It has also been shown that
using ENM information can significantly improve “classical”
tasks in Online Social Networks (OSNs), such as link pre-
diction [16]. Moreover, recent extensions of ENM have been
proposed to label links in the Ego Network with positive
or negative signs, depending on whether the corresponding
relationship between Ego and Alter displays a predominantly
positive or negative sentiment [17]. This extension, called
the Signed ENM (SENM) has been used to characterise,
in detail, the prevailing polarity of social relationships in
OSNs, in contrast to the offline world [18]. Therefore, the
ENM and SENM could reasonably be expected to provide
significant information pertinent to the task of SD. Indeed, Ego
Networks go beyond providing mere structural information
but can contribute semantically to a better knowledge of the
underlying mechanisms of a network and, therefore, provide
pertinent contextual insights for SD. In addition, the base ENM
requires only a list of Ego-Alter pairs and the frequencies of
their interaction; data which can be easily obtained just by
monitoring public interactions.

A. Contributions
Given the potential restrictions of data availability discussed

above, it is important to have a toolbox of diverse approaches

Fig. 2. The Ego Network Model, with the expected number of Alters of each
circle (for humans).

to ensure that researchers have a viable means of tackling
as many situations as possible. Indeed, the authors of the
CT-TN model specifically advocate for exploring further net-
work features to enhance SD [5]. In response to this, the
current work proposes two features from adjacent network
research areas for use within the task of SD: the ENM and
the SENM. Furthermore, this paper demonstrates that these
features perform better than a text-only approach, RoBERTa,
and similarly, although slightly worse, than the cutting-edge
CT-TN model. Thus, demonstrating that these novel features
are viable alternatives for SD when not all the required features
for CT-TN can be obtained. Finally, a comparison of the
performances between the inner and outer circles provides
evidence that a user’s less intimate but more numerous outer
connections have more of an impact on their stance.

II. BACKGROUND

A. Stance Detection

The focus of most SD studies is to classify target depen-
dency in one of four main ways: Target-Specific, Multi-Related
Targets, Target-Independent and Cross-Target [19]. For this
paper, we primarily concentrate on Cross-Target Stance De-
tection (CTSD), which is when a model is trained using data
for one target entity (source) and then tested on a different,
although related, target entity (destination). For example, a
model trained using texts containing opinions towards Joe
Biden could be used to predict the stance of texts concerning
another politician, such as Donald Trump or Bernie Sanders.

Approaches to CTSD, as well as to SD more generally,
differ based on the text’s context and the particular relationship
being discussed. On social media platforms such as X, there’s
often a focus on discerning the author’s stance (supportive,
opposing, or neutral) towards a specific proposition or tar-
get [20]. Recent advances in SD encompass a range of linguis-
tic features, such as word or character n-grams, dependency
parse trees, and lexicons [21]. Moreover, there has been a shift
towards end-to-end neural network methods that independently
learn topics and opinions, integrating them via mechanisms
such as memory networks or bidirectional conditional Long
Short-Term Memory models (LSTMs) [22].

Past studies have primarily relied on the text of a post to
gauge its stance, neglecting the valuable insights that other
features within social media platforms could offer. However,



the performance of the aforementioned CT-TN model demon-
strates the importance of considering structural features of
the surrounding social network. Thus, knowledge about a
user’s connections can reveal important insights about the user
themself and, therefore, about the texts they author.

B. The Ego Network Model

As mentioned in Section I, the ENM views a social network
from the point of view of an individual Ego and organises
their Alters around them based on their contact frequency,
while the SENM extends this by adding the addition of
signed relationships. Specifically, these signed relationships
are obtained by analysing the sentiment of the interactions
between each Ego and Alter, thus obtaining a list of sentiments
for each relationship, which can then be used to infer an
overall sentiment for the relationship as a whole. It has been
observed that many different types of relationships start to
have negative effects on the people involved once the ratio
of negative interactions generated by that relationship passes
a certain ratio: around 17% [23]. Therefore, this threshold is
used to infer the sentiments of relationships based on their
interactions.

While the Signed Ego Network provides an additional layer
of information, it does require text for each interaction in
a dataset. By contrast, the unsigned Ego Network requires
only the frequency of interactions between each pair of users,
without the need for any text.

III. METHODOLOGY

A. Performing Cross-Target Stance Detection

1) Feature Embeddings: In order to compute SD predic-
tions, the data first need to be transformed into represen-
tations that are readable by a prediction model. For this,
node2Vec [24] was applied to each of the previously estab-
lished graph-based features (likes, followers, friends) as well
as the novel Ego Networks and Signed Ego Networks, which,
although they are converted into the same vector-space repre-
sentation, can be better thought of as proxy measures of the
way humans function socially. Node2vec is an unsupervised
Deep Learning algorithm that uses a flexible, biased, random
walk procedure to explore networks. The visited nodes can
then be transformed into a vector space representation using a
variety of methods, such as skip-grams or a continuous bag-of-
words [24]. This is similar to how the word2vec algorithm [25]
treats words (nodes) and sentences (walks).

In addition to the graph-based features, text-based pre-
dictions were also used. These were generated using
RoBERTa [25], an incredibly well-performing pretrained
model that is used for many different natural language pro-
cessing tasks. RoBERTa maps every token in a sentence to a
vector representation in a continuous space.

As mentioned in Section I, the CT-TN model takes the
predictions of each of these features, RoBERTa, likes, follow-
ers and friends, and obtains a final prediction using majority
voting, where each feature’s prediction acts as a vote for either
“FAVOR” or “AGAINST”. This allows for a thorough analysis

of both textual and social network information, providing
valuable insights for CTSD.

Aside from the aforementioned features, this paper also
investigates two novel graph-based features: Ego Networks
and Signed Ego Networks. These are also converted to a vector
space representation using node2vec. Further details on how
the Ego Networks are obtained are explained in Section III-B.

2) Model Hyperparameters: Each of the features was used
to train a neural network model with two hidden layers for
classification task. For the text-based embedding, this was
done using RoBERTa, a batch size of 128, a dropout of 0.2, a
learning rate of 3e-5 (AdamW), and 40 epochs. For the graph-
based embeddings, this was done using node2vec, with the
same batch size and dropout, a learning rate of 1e-2 (SGD),
and 100 epochs.

3) Experimental Settings: The CT-TN model and the in-
dividual RoBERTa feature predictions were used as baselines
against which to test the two Ego Network features. These
were all prepared using few-shot cross-target training, whereby
the training data consisted of roughly 1,000 source target data
points with 4 injections of destination target texts, increasing
in size by increments of 100, from 100-shot to 400-shot
(inclusive). For example, the Biden-Trump predictions were
obtained by training on around 1,000 Biden texts with 100
Trump texts for the 100-shot condition, with 200 Trump tweets
for the 200-shot condition, and so on. The stance predictions
were then tested using between 500 and 800 data points
(depending on the amount of remaining unseen data) that were
solely related to the destination target (i.e. only using Trump-
related texts for the aforementioned example). We conducted
these experiments with five different random seeds: 24, 524,
1024, 1524, and 2024. Finally, we averaged the results from
these five seeds for each shot size.

B. Computing Ego Networks

1) Computing Ego Networks: An Ego Network can be
obtained for each active1 user in the data by calculating the
interaction frequencies of each of their relationships and then
applying a clustering algorithm to them. One of the most
popular methods for this is MeanShift [26], an unsupervised
algorithm that automatically finds the most appropriate number
of circles for an Ego [13], and so that is the algorithm that
was employed for this work.

Additionally, the unsigned Ego Network feature was also
separated into inner circles (1 and 2) and outer circles (3+),
to better understand the importance of the different levels of
the ENM for SD.

2) Generating Signed Connections: Once the unsigned
Ego Networks have been obtained, it is relatively simple to
generate the signed version. The interactions were grouped for
each Ego-Alter pair and then a model, called Valence Aware
Dictionary and sEntiment Reasoner (VADER) [27], was used
to obtain a sentiment for each interaction. VADER is a very

1An active user is defined as a user, with a timeline of at least 6 months,
that posts at least once every three days for half of the months that they are
included in the data, based on previous research [13]



competitive sentiment analysis model that is specifically de-
signed for performing sentiment analysis on English-language
tweets. It is also the model used in the original SENM research
paper [17].

Once sentiments had been obtained for the individual
interactions, the psychology-based threshold of 17% [23],
mentioned in Section II-B, was used to obtain a sentiment
label for each relationship, resulting in signed Ego Networks.

C. Data

The data used in this study come from a well-established
and publicly available set: P-Stance [28]. This dataset contains
21,574 English-language tweets collected during the 2020 U.S.
presidential election. These tweets were specifically collected
to be used for SD and each one is associated with one of 3
targets, Joe Biden, Donald Trump or Bernie Sanders, and a
corresponding stance label, either “AGAINST” or “FAVOR”.
Hashtags, such as “#BidenForPresident” and “#NeverBernie”
were used to both search for the tweets and to determine their
target and stance. While the original dataset only included the
text and stance of each tweet, the authors of the P-Stance
dataset provided 9,307 tweet IDs upon request, allowing
further data to be collected for each tweet, including infor-
mation about the authoring users. In addition to providing the
information required for computing the users’ Ego Networks
(see Section III-B), this also made it possible to obtain, for
each user, the remaining features required by CT-TN: likes,
followers and friends.

IV. RESULTS

The performances of the CT-TN model, RoBERTa, and the
two Ego Network features can be seen in Figure 3. Overall,
they all perform very well, with most reaching a macro F1
score of above 0.7 before 400-shot for all target pairs, with
CT-TN sometimes even going above 0.8. However, RoBERTa
does not perform quite as well as the others, and only achieves
macro F1 scores of around mid-0.6 for half of the target pairs.

Surprisingly, the signed and unsigned Ego Networks’ F1
scores are very close, being within 0.01 of each other for 5
of the 6 target pairs (at 400-shot), and within 0.02 for the
sixth pair (Sanders-Trump). This suggests that the additional
information of signed connections does not provide a signif-
icant amount of information for the task of CTSD. Rather,
it appears that the people we interact with regularly have an
impact on our stances regardless of whether we have a negative
or positive relationship with them.

Next, observing the outer circles, one can see that they
perform similarly to, and often even outperform, the full
Ego Network. However, they are less consistent, as displayed
by the Biden-Trump and Sanders-Trump target pairs. By
comparison, the inner circles perform slightly worse overall,
with performances closer to those of RoBERTa. Since the
outer circles contain weaker social relationships, it seems
that weaker, but more numerous, ties are more informative
than stronger, but less numerous, ones when it comes to
stance prediction. This is rather surprising given that previous

research on a similar network-based task, link prediction,
found that the more intimate inner circles are better predictors
of where new relations will form [16]. Thus, there seems to
be a disconnect between how we form new connections and
how we are influenced by them. Indeed, paired with the fact
that the signed and unsigned ENMs performed similarly, it
appears that the existence of a social connection may influence
an individual regardless of any qualitative aspects, such as
closeness or polarity.

The Ego Networks appear to perform slightly worse than the
CT-TN model. However, as they only require interaction data,
they could be used as a viable alternative whenever specific
network features are not provided or obtainable for a given
dataset. Moreover, as the signed and unsigned Ego Networks
achieved similar performances, one could focus on employing
the unsigned version, which would require even less data: only
the frequencies of interactions, without the need for their texts.

V. CONCLUSION

This study has highlighted potential limitations with pre-
vious approaches to CTSD (and SD more generally) due to
the availability, or rather the unavailability, of data. This is es-
pecially relevant given recent restrictions to data accessibility
on X, most notably the discontinuation of the Academic API,
which has been one of the largest and most popular social
network data sources for academic use for over a decade [11],
[13], [17], [18].

Addressing this limitation, this paper has proposed two
novel graph-based features that can be used for SD: the ENM
and the SENM. The latter requires only text-based interac-
tions between users and the former only requires interaction
frequencies, meaning that the content of the interactions can
remain hidden. These features perform consistently well for
CTSD (achieving macro F1 scores of at least 0.71, after
400 shots, for all 6 target pairs tested in this paper). Their
performances are only slightly worse than a previously estab-
lished and cutting-edge model, CT-TN. Ego Networks present
viable alternatives that could be used when not all the features
required for CT-TN (or similar models) are obtainable.

Finally, by observing the different performances between
the inner and outer circles of the ENM, it appears that, while
the inclusion of both leads to a more consistent performance
across different target pairs, the outer circles on their own can
often perform just as well and sometimes better. By contrast,
the inner circles do not perform as well, suggesting that the
greater number of less intimate connections in the outer circles
are more important for predicting a user’s stance.
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