ID-XCB: Data-independent Debiasing for Fair and Accurate Transformer-based
Cyberbullying Detection

Abstract

The use of swear words is a common proxy to collect datasets
with cyberbullying incidents, which increases the chances of
collecting such events that are otherwise hard to find. How-
ever, datasets collected through this means also have a risk of
introducing biases in cyberbullying detection models which
can learn spurious associations between swear words and the
presence of incidents. In this study, we undertake a pioneer-
ing study of measuring and mitigating swearing bias in cy-
berbullying detection tasks. Initially, we employ word-level
bias measures to demonstrate the distinctive features related
to swearing biases in transformer-based cyberbullying detec-
tion models. Subsequently, we introduce ID-XCB, the first
data-independent debiasing technique that combines adver-
sarial training, bias constraints and a debias fine-tuning ap-
proach aimed at alleviating model attention to bias-inducing
words without impacting overall model performance. Lastly,
we explore ID-XCB on two popular session-based cyberbul-
lying detection datasets along with a comprehensive set of ab-
lation studies and model generalisation studies. Our findings
show that ID-XCB learns robust cyberbullying detection ca-
pabilities while mitigating biases tied to swear word usage. It
consistently outperforms state-of-the-art debiasing methods
in terms of both performance improvement and bias mitiga-
tion. In addition, by combining quantitative and qualitative
analyses, we demonstrate the potential for generalisability of
our approach when tackling unseen data.

Warning: This paper contains swear words, which do not re-
flect the views of the authors.

Introduction

Cyberbullying is a form of bullying that takes place online
(Smith et al. 2010) and is defined as the repeated, deliber-
ate aggressive behaviour by a group or individual towards
a more vulnerable individual (Olweus 2001). Where cyber-
bullying is characterised by repeated aggression and power
imbalance, research (Dadvar et al. 2012, 2013; Menin et al.
2021; Yi and Zubiaga 2022) suggests capturing these char-
acteristics by modelling social media sessions (Yi and Zubi-
aga 2023a), i.e. a series of conversational exchanges (Cheng
et al. 2020), rather than from individual posts.
Cyberbullying detection models often suffer from biases
leading to false positive predictions when a swear word is
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present (Agrawal and Awekar 2018; Perera and Fernando
2021; Pamungkas, Basile, and Patti 2023), not least because
swear words are often used as a proxy for data collection
(Van Bruwaene, Huang, and Inkpen 2020). Swear words
are however often used in other non-abusive contexts, not
necessarily indicating cyberbullying incidents (Stephens and
Robertson 2020; Lafreniere, Moore, and Fisher 2022). A
disproportionate presence of swear words across both posi-
tive and negative samples then leads to model overfitting, ex-
hibiting a ‘swear word bias’ (Hovy and Prabhumoye 2021).
Figure 1 shows an example where highly biased profanity is
present in a snippet of a full session. A false positive predic-
tion for a model reliant on the presence of swear words.

...... i fucking love you more then ever now ! scootafett i
niiice ! ! dOpequise @ nigger_epidemic markzila this makes i
me mad knowing that..... |

Figure 1: A snippet of false positive sample in Instagram

In the existing body of research debiasing text classifica-
tion models, and particularly cyberbullying detection mod-
els, work has been limited to data-dependent constraints
(Gencoglu 2020; Cheng et al. 2021). These methods have
proven satisfactory in mitigating biases for models tested on
data from the same dataset or with similar characteristics,
but risk overfitting on the seen data, limiting their general-
isability and preserving both fairness and accurate perfor-
mance.

To advance research in generalisable debiasing, we pro-
pose ID-XCB(Independent Debiasing Cyberbullying De-
tection), the first data-independent debiasing method that
avoids the need to see target data, in turn detaching the link
between swear words and cyberbullying incidents (Figure 2
illustrates ID-XCB vs data-dependent strategies). To achieve
this, we integrate three strategies: (1) adversarial training,
using adversarial examples and objective cost function to
shift the model’s focus away from profanity; (2) two-player
constraint optimisation to work in the non-convex setting,
as the downstream task is trained on training datasets but
fairness constraints are derived from independent validation
datasets; and (3) contextualised embeddings from trans-
former models, which support generalisability by transfer-
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Figure 2: Data-dependent bias constraints vs. ID-XCB.

ring knowledge to the downstream task.!
Our contributions include:

* We quantify the impact of swear word bias on five
transformer models. We find that the same set of low-
frequency swear words consistently lead to biases across
models, which however vary across datasets.

* We introduce ID-XCB, the first data-independent debias-
ing method for cyberbullying detection, and experiment
it on two datasets showing improved performance and
bias reduction over state-of-the-art approaches. It fur-
ther shows potential for bias mitigation and performance
trade-offs in challenging scenarios dealing with unseen
data from a different dataset.

* We perform in-depth analyses of specific swear words,
model components, ablation experiments, and generali-
sation highlighting the importance of balancing between
performance and fairness in successful debiasing.

Related Work

Cyberbullying detection is generally tackled as a binary text
classification task determining if an instance constitutes a
case of cyberbullying or not. As cyberbullying generally
occurs as a series of social media interactions, a research
direction of increasing popularity is to identify cyberbul-
lying incidents observed through multiple user interactions
(i.e. sessions). Transformer-based models such as BERT and
RoBERTa enable a good understanding of context. Guru-
rangan et al. (2020); Yi and Zubiaga (2023b) demonstrate
that transformer-based models can be strong, and compet-

'The source  code is  publicly  available  at
https://github.com/Misinformation-emotion/Cyberbullying_debias

itive for session-based cyberbullying detection. However,
researchers have shown that transformers trained on unfil-
tered corpora suffer from degenerated and biased behaviour
(Schramowski et al. 2022).

Existing work on debiasing text classification models can
be categorised in four main directions: (1) statistically bal-
ancing training data, such as data augmentation (Dixon
et al. 2018), sample weighting (Zhang et al. 2020), iden-
tity term swapping (Badjatiya, Gupta, and Varma 2019) or
injecting objective samples (Nozza, Volpetti, and Fersini
2019); (2) mitigating embedding bias, such as fine-tuning
pre-trained contextualised word embeddings (Kaneko and
Bollegala 2021) or using adversarial learning to reduce the
bias (Sweeney and Najafian 2020); (3) proposing a multi-
task learning model (Vaidya, Mai, and Ning 2019) with an
attention layer that jointly learns to predict the toxicity of a
comment as well as the identities present in the comments in
order to mitigate bias; and (4) inferring fairness constraints
by using Error Rate Equality Difference to restrict the dis-
crimination behaviour of the model (Zafar et al. 2017).

Model debiasing is understudied in cyberbullying detec-
tion, where studies to date have focused on feeding fairness
constraints. For example, Gencoglu (2020) did so by using
sentence-DistilBERT as a base model, adding the Fairness
metric as a cost function to constrain bias during training.
Cheng et al. (2021) built on a reinforcement learning strat-
egy relying on a pre-defined set of sensitive triggers to con-
strain a series of hierarchical attention networks. Current
works focus on data-dependent fairness constraints, which
satisfyingly reduce the false positive rate on the training
data. However, if the terms of debiasing are strictly enforced
on the training data, this may be beneficial to ensure fair-
ness on similar data, but overfitting will also occur, thereby
reducing the fairness of the model on unseen data (Hardt,
Price, and Srebro 2016).

Datasets and Lexicon

Datasets We use the two existing and widely-studied
session-based cyberbullying datasets from two different so-
cial media platforms: Instagram (Hosseinmardi et al. 2015)
and Vine (Rafiq et al. 2015). To collect social media ses-
sions likely to contain cyberbullying events, authors of these
datasets looked at the presence of toxic words to maximise
the chances of collecting positive samples, which were sub-
sequently manually annotated. Table 1 shows statistics of
both datasets.

Instagram(IG) Vine(VN)

Cyberbullying Ratio 0.29 0.30
# Sessions 2,218 970
# Comments 159,277 70,385
# Users 72,176 25,699
# Avg. length of session 900 698
# Unique Swear words 253 207

Table 1: Dataset statistics.

Lexicon To determine the presence of swear words when



measuring biases, we use the lexicon with 535 words pro-
vided in (Van Hee et al. 2018; Google 2010).

Swear Word Bias

We adopt the Oxford Dictionary’s definition of bias as the
“inclination or prejudice for or against one person or group,
especially in a way considered to be unfair”. By ‘swear word
bias’, we refer to the impact of swear words during train-
ing on biasing model predictions, or model bias. A promi-
nent swear word bias ultimately leads to the assignment of
disproportionately high importance to the presence of swear
words in model predictions.

Distribution of swear words

A first look at the distribution of swear words(Table 2) shows
that cyberbullying events don’t contain more swear words in
cyberbullying detection datasets, likely limiting their utility
for the predictions. (P(S|C)~P(S|NC)&P(C|S)~P(NC|S)).
In fact, around 70% of the posts with swear words belong
to the negative class and fewer than 3% of all sessions have
no swear words in both datasets.

P(C) P(NC) P(S|C) P(SINC) P(C|S) P(NC|S)

Instagram 029  0.71 1.0 0.98 0.87 0.87
Vine 030  0.69 1.0 0.97 0.86 0.84

Table 2: Distribution of swear words. S: Swear word, C: Cy-
berbullying, NC: No Cyberbullying.

Measuring swear word bias

To measure the cyberbullying detection model’s bias to-
wards swear words, we adopt the Error Rate Equality Dif-
ference approach (Dixon et al. 2018), which relies on the
FPR (false positive rate) and FNR (false negative rate) met-
rics, calculated as follows:

FP FN

=——— ; FNR= —— €))
FP + TN FN + TP
For each swear word w, this allows to compute the FPRD
(FPR difference) and FNRD (FNR difference) as the model
bias towards that word:

FPR

FPRD,, = |FPR — FPR,,| 5
FNRD,, = |[FNR — FNR,,| 2

Where FFPR and FFN R are calculated on the entire test
set; PR, and I'N R,, are calculated on the subset of the
test set that contains w.

Having those, one can then aggregate the bias towards all
swear words W under consideration, i.e. F'PE D (false pos-
itive equality difference), and F'N E D (false positive equal-
ity difference):

FPED = ) ° |[FPR — FPR,|
weWw
FNED = ) ° |[FNR — FNR,|

weWw
Lower values indicate a fairer model.

3

Quantifying bias with transformers

Prior to moving on to bias mitigation, we first investigate
and quantify the impact of swear words F'PRD,, on the cy-
berbullying detection model. Using a vanilla BERT model
for initial experiments in both datasets, we show an anal-
ysis of the bias measurement of the most frequent swear
words as well as most bias-inducing swear words in Table
3. This analysis shows that the most frequent swear words
(left) have a low impact on model bias (left). If we look in-
stead at the swear words that cause the highest model bias,
we observe that these form a non-intersecting set of swear
words that are less frequent (right). We will come back to
these top bias-inducing swear words in our study to assess
the effectiveness of debiasing strategies.

Experiments involving five transformer models BERT
(Devlin et al. 2019), Roberta (Liu et al. 2019), Longformer
(Beltagy, Peters, and Cohan 2020), ELECTRA (Clark et al.
2020) and MPNET (Song et al. 2020) reveal different lev-
els of bias, consistently displaying higher bias scores across
both datasets (Figure 3).

ID-XCB

In this section, we introduce ID-XCB, our debiasing method
and its theoretical implementation in detail. The framework,
depicted in Figure 4, is divided into two parts:

1. Transformers Embedding: uses encoders of trans-
formers to generate three kinds of embeddings for training:
(1) clear embeddings from the original training dataset, (ii)
adversarial embeddings from the training dataset but with
all swear words replaced with a mask, and (iii) validation
embeddings from validation datasets.

2. Fine-tuning Training: is responsible for integrating
three different training processes to break data dependency
and improve the generalisability of the debiasing technique
and the cyberbullying detection model, which includes ad-
versarial training, tasking training and fairness training. The
hidden states selector helps find which layers are best to op-
timise knowledge.

Training loss functions

The intuition of ID-XCB is that leveraging the combination
of the three training loss functions will lead to improved de-
biasing and performance generalisation on unseen datasets.
Details of the three loss functions are provided next.

Adversarial training The aim is to apply adversarial
training against biased latent representations to mitigate un-
wanted bias. Thus, we utilise the cosine similarity function
to generate cosine loss such that the model can’t tell the dif-
ference between real training samples or artificially synthe-
sised training samples. The loss function is defined as fol-
lows:

EmbeddingLoss = 1 — cos(x1, x2) )

Where 1, and x, refer to the clear embeddings and ad-
versarial embeddings. The training goal is to optimise Em-
beddingLoss close to 0.



Most frequent swear words Top bias-inducing swear words
SwW FPRD, AG) FPRD, (VN) || SW FPRD,, AG) | SW FPRD,, (VN)
fuck 0.008 0.007 Piece of shit 0.929 cunt 0.900
shit 0.040 0.040 nigger 0.929 cum 0.500
fuckin 0.008 0.010 dickhead 0.929 bitches 0.400
bitch 0.040 0.040 gash 0.929 boob 0.234
hell 0.007 0.001 cunt 0.429 faggot 0.234
Table 3: Bias with most frequent swear words and with top bias-inducing swear words.
COMPARISON OF TOP SWEARING BIAS COMPARISON OF TOP SWEARING BIAS IN
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Figure 3: Swear word bias for 5 transformer models on both datasets.
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Figure 4: Architecture of ID-XCB.

Task training Binary Cross-Entropy loss is used to train
the main task: cyberbullying detection.

BCELoss = y(log @)
F( -y og - 1)) 5)

Where y refers to the training labels. The input is a syn-
thetic embedding which is the average of clear and adversar-

ial embeddings.

Fairness constraints If the terms of debiasing are strictly
enforced, this may be beneficial to ensure fairness but may
harm model accuracy. In practice, sensitive tuning is per-
formed by using a proportional constraint, which can main-
tain a more suitable trade-off. We use an independent vali-
dation set to derive fairness constraints, which we define as:

FC = 5(276 FPRD,, + zn: FNRD,)

w=1

(6)

w=1

Where [ is how tightly the data is bound to adjust the
fairness constraints, and w is the swear word under consid-
eration within the validation data.

Hidden states selector

Compared to static embeddings, contextualised embeddings
such as BERT, GPT and ELMo are less biased (May et al.
2019), but still show a tendency to adopt biases during train-
ing (Zhao et al. 2019; Kaurita et al. 2019). These biases are
learned in each layer (Bommasani, Davis, and Cardie 2020),
thus fine-tuning the orthographic projections in intermediate
(hidden) layers (Kaneko and Bollegala 2021) is an efficient
method that doesn’t depend on the model. To identify which
layer is good for fine-tuning, we add a hidden states selector,
which iteratively extracts the representation of each layer as
input to the classifier for fine-tuning, and then tests the gen-
eralisation and debiasing capabilities of each level.

Constraint-based classifier

It comprises two fully connected layers on top. The two-
layer feed-forward network is designed with ReL.U activa-



tion and 512 hidden sizes for the first layer and Softmax ac-
tivation for the output layer. Batch normalisation is added to
standardise these inputs and reduce the generalisation error,
S0 as to increase the generalisability of the classifier.

Joint training

Following Algorithm 1, we combine the three training
losses to fine-tune a classifier. Adversarial training and task
training optimise ID-XCB model parameters on a training
dataset, and simultaneously enforce the fairness constraints
on a validation set to reduce swear word impact. However,
as the FC loss is used on an independent validation set V, ,
this causes a non-convex combining loss. The non-zero-sum
method (Cotter, Jiang, and Sridharan 2019) deals with non-
differentiable, even discontinuous constraints. The training
goal is not to converge the combined cost function to the
lowest point, but to reach a certain trade-off. We set a thresh-
old ¢ to achieve the training target.

Algorithm 1: ID-XCB training. Vj: training embeddings;
V,: adversarial embeddings; V,,: validation embeddings; Y;:
training labels; Y,,: validation labels; Y, : adversarial labels;
n: number of epochs.

Require: V,,V,, V,.Y:,Y,,Y,,n
0: for epoch in range (n) do
for layer(i) =1,2,...,12do
for step, (Vs1,V41,V,0),(Ye,Y,) do
1;=BCELoss((V3,V,),Y?)
l,=EmbeddingLoss((Vs,V,),Ys)
lsq=FC(classifier,V,,)
if (1;+1,+14)> t then
classifier.backward(l;+1,+(4)
results[i]=classifier.evaluate(V,,Y,)
else
Exit!

=4

PRI

Experiment Settings

Our models. BERT and RoBERTa are frequently employed
for cyberbullying detection due to their advanced natural
language understanding capabilities (Ogunleye and Dhar-
maraj 2023; Verma et al. 2022; Yi and Zubiaga 2023b).
While ID-XCB is flexible and can adopt other trans-
former models, here we experiment with BERT base and
RoBERTa_base, which we refer to as ID-XCBggrr and
ID-XCBRroperTa- When training these models, we use
the training hyper-parameters recommended by Sun et al.
(2020); Batch size: 16; Learning rate (Adam): 2e~°; Num-
ber of epochs: 4.

Pre-processing. We follow Ge, Cheng, and Liu (2021)
to aggregate and clean session data, and to truncate session
lengths to 512 tokens, with the difference that we do not per-
form oversampling (as our objective is to keep the original
data imbalance).

Baseline models. We consider Cheng et al. (2021) and
Gencoglu (2020) for standing as highly influential debias-
ing methods for the cyberbullying detection task. Their ap-
proach of bias constraints on training data has consistently

demonstrated state-of-the-art performance in recent experi-
ments. Thus, we compare our method with these two state-
of-the-art cyberbullying detection debiasing methods (using
BERT (Devlin et al. 2019) and RoBERTa (Liu et al. 2019)
variants of those) as well as vanilla transformers.

* De-RoBERTa & De-BERT: applied reinforcement on
transformers (Cheng et al. 2021).

* FC-RoBERTa & FC-BERT: uses Error Rate Equality
Difference to restrict transformers’ discrimination be-
haviour (Gencoglu 2020).

* Roberta & BERT.

Ablated models. Aiming to gain a better understanding of
the contribution of each component of ID-XCB, we exper-
iment with ablated models where some of the components
are removed. We test a total of three models:

* ID-XCB gz Removing fairness constraints.

* ID-XCB g Without Adversarial training.

* ID-XCBgr The synthetic embedding is replaced by the
original embedding, i.e. ignoring the weakening effect on
swear words.

Evaluation. We use five widely-used evaluation metrics
for imbalanced datasets and model bias. These include (1)
recall, precision and microF1 as performance metrics, and
(2) FPED and FNED, as fairness indicators, are cumulative
deviation values for each swear word, the scale can be [0,
Positive infinity], where 0 indicates no deviation.

Train-test splits. We choose 5 random folds with 80%-
20% sessions for training / testing, reporting the average per-
formances across the 5 runs.

Results

We next discuss results of our experiments and delve into
numerous aspects of our model.

Overall performance and debiasing

Table 4 shows the results for all models, including our two
ID-XCB variants and six baselines.

The average F1 score across five runs for ID-XCBpggrr
is 0.83 with a standard deviation of 0.01 on both datasets.
The best baseline BERT debias model from previous re-
search, De-BERT, achieves an average F1 score of 0.84 with
a standard deviation of 0.02 on the IG—IG dataset, and 0.74
with a standard deviation of 0.02 on the VN— VN dataset.
A paired t-test shows that the difference in performance
between ID-XCBggrrr and De-BERT is statistically sig-
nificant (p-value = 0.031), with a t-statistic of 2.54. This
indicates that ID-XCBggrr consistently outperforms De-
BERT, based on BERT, in the context of swearing debi-
asing work. Similarly, we apply the same method to as-
sess the statistical significance between ID-XCBr,5ERTq
and De-RoBERTa. The average F1 across five runs for ID-
XCBroprerT is 0.88 (IG—IG) and 0.89 (VN—VN) with
a standard deviation of 0.02. In comparison, De-RoBERTa
achieves an average F1 of 0.87 with a standard deviation of
0.02 (IG—IG) and 0.76 with a standard deviation of 0.03
(VN—VN). A paired t-test revealed that the difference in
performance between the two models is statistically sig-
nificant (p-value = 0.004), with a t-statistic of 3.714, indi-



Src—Tgt | Model | F1 Rec. Prec. FPED FNED
BERT 0.78 (£0.02) | 0.78 (£0.02) | 0.78 (£0.02) | 8.86 (+0.36) | 27.40 (£5.98)
RoBERTa 0.84 (£0.04) | 0.80 (£0.03) | 0.85 (£0.02) | 6.81 (£3.49) | 23.00 (£3.77)
De-BERT 0.84 (£0.02) | 0.82 (£0.03) | 0.83 (+£0.02) | 14.00 (£2.79) | 20.00 (£11.68)
Gl | De-ROBERT 0.87 (+:0.02) | 0.85(£0.06) | 0.88 (£0.05) | 3.20 (£1.49) | 13.00 (+2.34)
FC-BERT 0.75 (£0.03) | 0.75(£0.03) | 0.75(£0.03) | 5.05 (£1.24) 16.40 (£1.83)
FC-RoBERTa 0.81 (£0.02) | 0.77 (£0.06) | 0.85(£0.04) | 15.20 (+4.97) 16.10 (£3.22)
ID-XCBggrr 0.83 (£0.01) | 0.84 (£0.02) | 0.83 (£0.0I) | 6.70 (£1.48) 16.29 (£2.70)
ID-XCBroprrre | 0.88(0.02) | 0.88 (£0.02) | 0.89 (£0.02) | 3.90 (£1.00) | 15.60 (£4.56)
BERT 0.77 (£0.03) | 0.75 (£0.04) | 0.80 (£0.04) | 5.73 (£1.17) | 18.00 (£7.06)
RoBERTa 0.85 (£0.03) | 0.83 (£0.07) | 0.87 (£0.02) | 4.66 (+£1.67) 16.99 (£5.62)
De-BERT 0.74 (£0.02) | 0.73 (£0.02) | 0.86(£0.02) | 10.40 (+6.14) 11.40 (+3.94)
VN VN De-RoBERTa 0.76 (£0.03) | 0.85(£0.05) | 0.68 (£0.06) | 6.58 (£3.47) 14.10 (£9.38)
FC-BERT 0.66 (£0.07) | 0.67 (£0.08) | 0.66 (£0.16) | 16.00 (+6.27) 17.00 (£5.05)
FC-RoBERTa 0.79 (£0.02) | 0.81 (£0.02) | 0.76 (£0.03) | 8.10 (£1.51) 13.00 (£6.34)
ID-XCByrnr 0.83 (£0.01) | 0.83 (£0.02) | 0.85 (£0.01) | 3.00 (£0.60) | 17.10 (£2.75)
ID-XCBroprrre | 0.89 (£0.02) | 0.86 (£0.02) | 0.93 (£0.02) | 151 (£1.21) | 11.73 (£3.26)

Table 4: Results for ID-XCB and six baseline models.

cating that ID-XCBRr,prrr consistently outperforms De-
RoBERTa.”

These results demonstrate the general superiority of our
ID-XCB model, of which ID-XCB g, RrT, Shows superior
performance. We observe that in the in-dataset experiments
it is capable for obtaining higher performance scores. It also
achieves superior bias mitigation than most of the models,
showing the best FPED score across all models for the Vine
dataset. It is also only behind De-BERT for FNED in the
Vine dataset and only behind De-RoBERTa in the Instagram
dataset.

Interestingly, we observe that ID-XCB achieves compet-
itive debiasing while leading to improved overall perfor-
mance. Debiasing can often sacrifice performance, espe-
cially when applying data rebalancing, regularisation, and
adversarial learning debiasing methods (Chen et al. 2023).
In our study, our goal was not to achieve the lowest pos-
sible debiasing result but to find a balance between perfor-
mance and bias reduction. We observe that all our models
mitigate the bias of the original base model, but we did not
further constrain the bias, as doing so would reduce model
performance. In this challenging scenario, ID-XCB achieves
a trade-off between debias and performance.

Ablation study

We conduct ablation tests without adversarial train-
ing, fairness constraints and synthetic embedding in ID-
XCBRroBERTa- The results in Table 5 show that all com-
ponents contribute to a noticeable improvement to both per-
formance and debiasing. It is particularly worth mentioning
that when the synthetic embedding (ID-XCB gr) is replaced
by the original embedding, the bias increases sharply. This
aligns with our expectations, as the component was designed
to mitigate the model’s fixation on specific swear words, but
still preserving their contribution to the task.

Revisiting bias-inducing swear words

In Table 3 we have identified the top 5 most bias-inducing
swear words for both datasets when using a vanilla BERT
model, which we revisit here to assess the extent to which
ID-XCB helps mitigate the bias induced by these words. Ta-
ble 6 shows the FPRD scores for these top 5 swear words
in Instagram and Vine, respectively. We observe a signifi-
cant decrease in bias score (FPRD) in both cases for all the
words individually as well as on aggregate when we average
their scores. In our analysis, we observe a more significant
decrease in bias scores for the Instagram dataset compared
to the Vine dataset when focusing on the most bias-inducing
words. This difference could be attributed to different data
collection strategies and different data structures on different
platforms. Yi and Zubiaga (2023a) observe remarkable dif-
ferences between the two datasets. Where the majority of cy-
berbullying incidents occur at the beginning in the Instagram
dataset, these are more uniformly spread throughout the en-
tire session for the Vine dataset, which makes model debi-
asing more challenging. Additionally, the Instagram dataset
may contain more diverse or expressive language patterns,
which can amplify the impact of bias-inducing words.

Generalisation

To assess the generalisability of ID-XCB, we next look at
experiments crossing datasets, i.e. using a dataset for train-
ing and the other for testing. Looking again at the highest
bias-inducing words, Figure 5 demonstrates that ID-XCB
smoothly shrinks the highest bias at the word level without
stimulating new bias, proving its effectiveness on mitigating
bias for unseen data.

Table 7 shows performance results for cross-platform ex-
periments, highlighting in the first instance the overall su-
perior performance of ID-XCBr,prrr. Despite perfor-
mance improvement, the ID-XCB model can outperform



Sre—Tgt | Model || Fl FPED | FNED
ID-XCB 0.89 (+0.01) | 3.90 (+1.00) | 15.60 (+4.56)
161G | ID-XCByp || 085 (£0.03) | 23.00 (£4.65) | 16.00 (+4.97)
ID-XCBpp || 0.86 (+0.02) | 10.00 (+£1.42) | 21.00 (+3.78)
ID-XCBgp || 0.84 (£0.02) | 15.00 (+3.26) | 20.00 (+£3.74)
ID-XCB 0.89 (+0.02) | 1.51(+1.21) | 11.73 (+3.26)
VN_VN | ID-XCBpp [ 087 (£0.01) [ 646 (1.76) | 16.38 (£0.70)
ID-XCBpp || 0.88 (+£0.02) | 4.98 (+1.19) | 16.88 (+£1.24)
ID-XCBgp || 0.86 (£0.01) | 6.71 (+1.51) | 16.90 (+0.04)

Table 5: Performance comparison of ID-XCB g,pgrT, and ablated variants.

Vine->Instagram

SW RoBERTa ID-XCB RoBERTa
Instagram
piece of shit 0.929 0.449
nigger 0.929 0.135
dickhead 0.929 0.706
gash 0.929 0.049
cunt 0.429 0.363
Average 0.829 0.340
Vine
cunt 0.900 0.242
cum 0.500 0.026
bitches 0.400 0.338
boob 0.234 0.075
faggot 0.234 0.214
Average 0.454 0.179

Table 6: Bias scores (FPRD).

some of the baseline models in terms of debiasing, but it
doesn’t achieve the top result in the debiasing metric for this
study case. Because the debiasing metric or performance
metric might not adequately reflect the trade-offs between
bias reduction and maintaining high accuracy or other essen-
tial performance measures. The context in which the model
is deployed requires a balanced measure of overall model ef-
fectiveness in this case. This calls for further consideration
of the trade-off between debiasing and performance. Delv-
ing into the significance of this, we next look into the trade-
off between the two metrics.

Assessing the trade-off between performance and
debiasing

While assessing model generalisability, we need to consider
the performance vs debiasing trade-off. This is important as
we observe that, for example, lowest performing models,
FC-RoBERTa (19% and 40% below our model in the two
datasets), achieve some of the best debiasing scores. Given
the lack of a joint metric, we analyse the interplay between
them. Therefore, we design constraint weights and layer se-
lectors to achieve a balance between debiasing and main-

Piss off Cunt

pissed Fucking cunt

vagina Bitch

bloody goddam

faggot asshole

cock pissed
dick nigger

rapist boobs

bullshit boob

prick

——RoBERTa ID-XCB-ReBERTa

Figure 5: Swear word bias in RoBERTa vs ID-
XCBRroBERTG for cross-platform experiments.

taining performance. Figure 5 shows our constraints didn’t
encourage new bias generated during cross-platform tasks.
Models smoothly shrink the highest bias in word level with-
out stimulating new bias.

It is difficult to find a simple linear relationship between
task performance and debiasing effects. We use FPRD and
FNRD as the metrics to measure bias associated with spe-
cific words. As pointed out by Borkan et al. (2019), these
are metrics of fairness rather than measurements of perfor-
mance. Given the different objectives of performance and
bias metrics, we analyse their interplay. In Table 7, we
observe that the model (FC-BERT) with the worst cross-
platform performance (F1 score) also obtain the lowest bias
value. This is because FPR and FNR appear to differ mini-
mally if they are both very large across the dataset and bias
triggers.

Impact of constraint weighting The weight is an impor-
tant parameter to adjust how many constraints are applied
to the bias. We assess 10 values ranging from [0.1-1] at in-
tervals of 0.1. Figure 6 illustrates the correlation between
bias constraint weights and task performance. Both cross-
dataset settings show the same pattern: gradually debiasing
on the training dataset enhances the model’s performance on
unseen datasets. The model achieves optimal performance
when parameters are set to 0.6 or 0.7. However, tightening
the constraints beyond this point leads to a significant drop
in model performance. This demonstrates that excessive de-



Source—Target | Model | F1 Rec. \ Prec. FPED FNED

BERT 0.54 (£0.02) | 0.52(£0.03) | 0.61 (£0.01) | 4.00 (£1.31) 18.00 (£2.58)
RoBERTa 0.70 (£0.02) | 0.71 (£0.02) | 0.70 (£0.01) | 28.30 (+3.58) | 31.90 (£8.43)

IG—VN De-BERT 0.64 (£0.01) | 0.68 (£0.02) | 0.63 (£0.01) | 14.00 (£+3.49) | 30.00 (+4.58)
De-RoBERTa 0.62 (£0.01) | 0.71 (£0.03) | 0.60 (£0.02) | 32.00 (£2.05) | 27.00 (£1.65)
FC-BERT 0.41 (£0.02) | 0.50 (£0.01) | 0.34 (£0.02) | 3.00 (£+1.12) 0.00
FC-RoBerta 0.57 (£0.01) | 0.65(£0.02) | 0.54 (£0.02) | 7.20 (+£1.32) 10.90 (£2.62)
ID-XCBgggrr 0.73 (£0.02) | 0.72(£0.02) | 0.74 (£0.02) | 23.00 (£3.37) | 31.00 (£4.56)
ID-XCBropprra || 076 (£0.01) | 0.78 (£0.01) | 075 (£0.01) | 20.30 (£3.56) | 17.40 (£6.02)
BERT 0.70 (£0.04) | 0.66 (£0.01) | 0.79 (£0.06) | 24.00 (£2.32) | 37.00 (£3.06)
RoBERTa 0.71 (£0.02) | 0.69 (£0.04) | 0.79 (£0.02) | 32.40 (£4.54) | 35.40 (£6.72)

UNoIG | De-BERT 0.64 (£0.03) | 0.68 (0.02) | 0.63 (£0.01) | 31.00 (£4.94) | 30.00 (£2.70)
De-RoBERTa 0.61 (£0.01) | 0.59 (£0.02) | 0.69 (+0.01) | 12.00 (£1.18) | 15.00 (£4.32)
FC-BERT 0.31 (£0.04) | 0.53 (£0.02) | 0.63 (+0.03) | 13.60 (£2.27) | 3.50 (+1.00)
FC-RoBERTa 0.41 (£0.05) | 0.50 (£0.03) | 0.34 (£0.06) | 5.00 (+2.32) | 16.00 (£3.42)
ID-XCBgEggrT 0.74 (£0.01) | 0.73 (£0.01) | 0.75 (£0.01) [ 20.00 (£3.21) | 34.00 (£4.01)
ID-XCBpoprrrae || 0.81 (£0.02) | 0.80 (£0.01) | 0.81 (+0.01) | 23.00 (£5.31) | 35.00 (£3.48)

Table 7: Cross-dataset results for ID-XCB and six baseline models.

biasing during training may not generalise well.

The weights of bias constraints
0.82
0.8
0.78

0.76
0.74

0.72

0.68
0.66

0.64
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

—Instagram->Vine Vine->Instagram

Figure 6: Impact of constraint weighting. X axis for con-
straint weights () and Y axis for F1 score.

The bias through different layers The hidden state selec-
tor is used to select the most transferable layer in transform-
ers, so as to improve the transferability of the overall model.
We are interested in quantifying its impact across layers,
particularly as the last layer of the model is not necessar-
ily the one leading to the best performance. To gain a deeper
understanding into how the performance of various layers
impacts debiasing and cyberbullying detection transferabil-
ity, we measure the F1 score and FPED in each layer, fixing
the last layer as the reference. Figure 7 shows that layer 10
on IG—VN leads to the best performance-debiasing trade-
off, and layer 8 on VN—IG. We conclude two interesting
phenomena: 1) A non-linear relationship exists between de-
biasing and performance. For instance, the eighth and fifth
layers demonstrate the smallest FPRD values (IG—VN), yet
their performance reaches two extremes; 2) The first few lay-
ers focus on learning general features, rendering debiasing

less impactful on overall model performance. However, in
deeper layers, the network pays more attention to specific
features, making debiasing efforts more effective in enhanc-
ing performance.

Debias degradation

ANV,

—|nstagram->Vine

o b honaea

Layer 8

Performance degradation X
Vine->Instagram

0.06
0.04

Figure 7: Bias across layers: X axis refers to 12 transformer
layers. Y axis refers to relative performance and debiasing
compared to layer 12.

Conclusion

In this study, we introduce ID-XCB, the first data-
independent debiasing approach for cyberbullying detection.
Our study looks at both measurement and mitigation of bi-
ases in cyberbullying datasets and detection. We first quan-
tify the impact and complexity of the bias produced by



swear words in transformer-based models. While tackling
the problem, we propose a novel bias mitigation method,
ID-XCB, which encapsulates adversarial training, constraint
optimisation and layer fine-tuning. The method pays atten-
tion to the damage to the module due to excessive con-
straints and considers the trade-off between fairness and ac-
curacy in the selection of algorithms. Our experiments on
two cyberbullying detection datasets show the effectiveness
of ID-XCB, achieving competitive bias constraints enabling
data-independent debiasing and training. This improvement
is generally consistent in in-dataset experiments, whereas
the improvement is particularly on performance for cross-
dataset settings, with a good balance on debiasing, but which
shows room for improvement in these challenging settings.

Limitations

Our work is however not without limitations. Most impor-
tantly, the dearth of available datasets leads to inevitable
limitations in further studying generalisability across a more
diverse set of datasets and across other social media plat-
forms beyond Instagram and Vine. While there has been a
more substantial body of work in related tasks within the
umbrella of online abuse detection, such as hate speech de-
tection, research on cyberbullying detection, and particularly
on session-based cyberbullying detection, is much more lim-
ited to date and would greatly benefit from access to a
broader collection of available datasets.

Our proposed ID-XCB model demonstrates state-of-the-
art performance on the cyberbullying detection task, en-
abling some generalization across different datasets and
platforms. This improvement comes with a competitive
trade-off on performance and debiasing, however the model
is not always consistently best across both metrics, which
shows an area for further improvement.

Ethics Statement

The aim of our research is to contribute to society and to
human well-being by curbing incidents of cyberbullying on-
line and particularly on social media. Our approach to miti-
gating biases in keyword presence across cyberbullying and
non-cyberbullying incidents is performed without leverag-
ing any identity information to support the debiasing, and
hence our approach is designed to support all individuals
equally and with no intended discrimination or potential for
harm towards any vulnerable groups.

There is an inevitable risk, as adversaries, who actually
engage in cyberbullying incidents, may use this kind of re-
search for malicious purposes such as to learn how to cir-
cumvent detection. This is however not the intended use of
our research.
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